Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biomed Inform ; 141: 104361, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298614

ABSTRACT

BACKGROUND: The International Classification of Diseases (ICD) codes represent the global standard for reporting disease conditions. The current ICD codes connote direct human-defined relationships among diseases in a hierarchical tree structure. Representing the ICD codes as mathematical vectors helps to capture nonlinear relationships in medical ontologies across diseases. METHODS: We propose a universally applicable framework called "ICD2Vec" designed to provide mathematical representations of diseases by encoding corresponding information. First, we present the arithmetical and semantic relationships between diseases by mapping composite vectors for symptoms or diseases to the most similar ICD codes. Second, we investigated the validity of ICD2Vec by comparing the biological relationships and cosine similarities among the vectorized ICD codes. Third, we propose a new risk score called IRIS, derived from ICD2Vec, and demonstrate its clinical utility with large cohorts from the UK and South Korea. RESULTS: Semantic compositionality was qualitatively confirmed between descriptions of symptoms and ICD2Vec. For example, the diseases most similar to COVID-19 were found to be the common cold (ICD-10: J00), unspecified viral hemorrhagic fever (ICD-10: A99), and smallpox (ICD-10: B03). We show the significant associations between the cosine similarities derived from ICD2Vec and the biological relationships using disease-to-disease pairs. Furthermore, we observed significant adjusted hazard ratios (HR) and area under the receiver operating characteristics (AUROC) between IRIS and risks for eight diseases. For instance, the higher IRIS for coronary artery disease (CAD) can be the higher probability for the incidence of CAD (HR: 2.15 [95% CI 2.02-2.28] and AUROC: 0.587 [95% CI 0.583-0.591]). We identified individuals at substantially increased risk of CAD using IRIS and 10-year atherosclerotic cardiovascular disease risk (adjusted HR: 4.26 [95% CI 3.59-5.05]). CONCLUSIONS: ICD2Vec, a proposed universal framework for converting qualitatively measured ICD codes into quantitative vectors containing semantic relationships between diseases, exhibited a significant correlation with actual biological significance. In addition, the IRIS was a significant predictor of major diseases in a prospective study using two large-scale datasets. Based on this clinical validity and utility evidence, we suggest that publicly available ICD2Vec can be used in diverse research and clinical practices and has important clinical implications.


Subject(s)
COVID-19 , Coronary Artery Disease , Humans , Prospective Studies , Risk Factors , ROC Curve , International Classification of Diseases
3.
Front Immunol ; 14: 1101808, 2023.
Article in English | MEDLINE | ID: covidwho-2241807

ABSTRACT

Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Kinetics , Post-Acute COVID-19 Syndrome , Inflammation , Inflammation Mediators , Interferon-alpha
4.
BMB Rep ; 55(9): 465-471, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1998890

ABSTRACT

Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of largescale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment. [BMB Reports 2022; 55(9): 465-471].


Subject(s)
COVID-19 , Cytokines , Humans , Pandemics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics
5.
Cell Rep ; 37(1): 109798, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1415262

ABSTRACT

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Complement System Proteins/immunology , Eosinophils/immunology , Inflammation/immunology , Pneumonia, Viral/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antigen-Antibody Complex/metabolism , COVID-19/metabolism , COVID-19/virology , Complement Activation , Complement Membrane Attack Complex/metabolism , Eosinophils/virology , Female , Humans , Inflammation/metabolism , Inflammation/virology , Lung Injury/immunology , Lung Injury/pathology , Lung Injury/virology , Male , Middle Aged , Pneumonia, Viral/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Severity of Illness Index , Signal Transduction , Th2 Cells/immunology , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL